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Transdermal optical imaging 
revealed different spatiotemporal 
patterns of facial cardiovascular 
activities
Jiangang Liu1, Hong Luo2, Paul Pu Zheng3, Si Jia Wu3 & Kang Lee3

Human cardiovascular activities are important indicators of a variety of physiological and psychological 
activities in human neuroscience research. The present proof-of-concept study aimed to reveal 
the spatiotemporal patterns of cardiovascular activities from the dynamic changes in hemoglobin 
concentrations in the face. We first recorded the dynamics of facial transdermal blood flow using a 
digital video camera and the Electrocardiography (ECG) signals using an ECG system simultaneously. 
Then we decomposed the video imaging data extracted from different sub-regions of a face into 
independent components using group independent component analysis (group ICA). Finally, the ICA 
components that included cardiovascular activities were identified by correlating their magnitude 
spectrum to those obtained from the ECG. We found that cardiovascular activities were associated 
with five independent components reflecting different spatiotemporal dynamics of facial blood flow 
changes. The strongest strengths of these ICA components were observed in the bilateral forehead, 
the left chin, and the left cheek, respectively. Our findings suggest that the cardiovascular activities 
presented different dynamic properties within different facial sub-regions, respectively. More broadly, 
the present findings point to the potential of the transdermal optical imaging technology as a new 
neuroscience methodology to study human physiology and psychology, noninvasively and remotely in 
a contactless manner.

Human cardiovascular activities are important biological signals. They are convenient and reliable indicators of a 
variety of physiological and psychological activities and thus are widely used in human neuroscience research1–3. 
For example, during rest, cardiovascular activity is at the baseline level. However, when people are under acute 
stress, their cardiovascular activity increases, whereas when they are concentrating, their cardiovascular activ-
ity decreases. For this reason, researchers have devised various methods to measure cardiovascular activities in 
human neuroscience research.

One of the methods is to obtain cardiovascular activity signals optically from under the skin. It is well known 
for almost a century that due to the translucent nature of the human skin, light can penetrate the skin and 
reemit4–6. The reemitted light can be captured externally by optical sensors, from which one can extract blood 
flow changes beneath the skin. Because the blood flow beneath the skin couples tightly with the cardiovascular 
change, one can then use the blood flow changes to index cardiovascular activities associated with various phys-
iological and psychological states.

Based on this principle, Photo-plethysmography (PPG) is a relatively inexpensive methodology to 
non-invasively detect cardiovascular activities7. The implementation of PPG is typically dependent of dedicated 
light sources and the attachment of the sensors to a particular part of the body, primarily the earlobe or the finger, 
making this imaging methodology still somewhat cumbersome, inconvenient, and invasive.

Recently, researchers have proposed the use of simple video images of the face and the ambient light sources to 
extract cardiovascular activities information8–13. This method is commonly referred to as video plethysmography 
(VPPG). For example, Poh et al.9,10 extracted the cardiovascular pulse waves from the webcam-recorded video 
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images of faces by performing the temporal independent component analysis (ICA) on the three color channels 
(i.e., red, green and blue) of face video records. Further, as an extension of ICA, Tsouri et al.12 performed a con-
strained ICA on the three color channels of face video records and avoided the sorting problem of ICA. There 
are several advantages of this approach over the pre-existing technologies. First, because this approach relies on 
imaging of the visible light spectrum, one can use the now widely available and inexpensive digital video cameras 
without the need of any additional equipment. Second, due to the use of the digital video cameras, this approach 
allows for remote and noninvasive measurements of cardiovascular activities in any part of the exposed human 
body, mostly the face.

However, one of the problems of video plethysmography is that it confounds ballistic cardiac activities with 
those of blood flow related cardiovascular activities on the face. Ballistic cardiac activities have been well recog-
nized since the 1930s14. It is now well established that cardiac activities can be measured precisely by recording 
subtle movements of the body (including the face), which is referred to as ballistocardiography or BCG in the 
literature. The source of BCG is the mechanic movements of the heart due to its rhythmic pumping of the blood. 
Given this source, the activities of BCG are highly synchronized with cardiac pulses based on the electrocardiog-
raphy or ECG, as the mechanic pulsations of the heart move the whole body including the face in unison.

In contrast, although the ultimate source of cardiovascular activities on the face is the heart’s pumping actions, 
their source is a different one. Instead of mechanic movements, facial cardiovascular activities are the result of 
blood flow in the arterial vasculature and therefore of fluid dynamics in nature. Due to the anatomical structure of 
the vasculature, the blood travels the arteries that become increasingly narrower and more bifurcated. As a result, 
the farther the blood is away from the heart, the greater the impendence to the blood flow and the slower the flow 
speed. Further, due to the elasticity of the arterial walls, original cardiovascular activities are attenuated as they 
spread though the arterial vasculature. One of the major consequences is the location dependent phase shift of 
cardiac pulses. A well-known application that capitalizes on this fact is using PPG and ECG signals to estimate 
blood pressure (pulse transit time or PTT)15 that requires the measurement of temporal differences between 
the peeks of ECG and PPG waves. Unfortunately, in the existing studies using VPPG to measure cardiovascular 
activities on the face, researchers ignored this crucial difference between the ballistocardiac signals and the car-
diovascular signals on the face.

Additionally, in their analyses, they averaged pulsating signals across all the pixels of the entire face9–12. 
However, this averaging approach is problematic because it is based on an assumption that the temporal dynam-
ics of cardiovascular activities in different parts of the face is synchronized. This assumption, however, is not 
true3,16,17. It is now well established that the facial vascular distribution is highly heterogeneous due to the unique 
network of facial vascular system and differential neural controls by the sympathetic and parasympathetic nerv-
ous systems18,19. In agreement with this view point, Ghiass et al., using another optical imaging method (i.e., 
infrared imaging), also extracted a vascular network that is heterogeneously distributed across faces20,21. As a 
result, the cardiovascular activity differs in different sub-regions of the face. There are likely temporal differences 
in the cardiovascular activities in different parts of the face. In addition, signals from some sub-regions may be 
quite salient, whereas signals from other sub-regions may be fairly faint or even absent.

Revealing such different spatiotemporal patterns may have important advantages. For example, the time 
course extracted from the sub-regions with the strongest cardiac signal presents a relatively high signal-to-noise 
ratio (SNR) than those extracted from other sub-regions. More importantly, the region-specific time courses may 
preserve more subtle and fine temporal features of cardiovascular signals. They therefore can be used to be more 
accurately measure the dynamic properties of cardiovascular activities.

The spatiotemporal information of facial cardiovascular activity may have important physiological and psy-
chological significances. It is generally accepted that the sympathetic and parasympathetic nervous systems, the 
two branches of the autonomic nervous system (ANS), are involved in emotion regulation. It has additionally 
been found that the blood flows of different facial regions are controlled differently by the sympathetic and para-
sympathetic nervous systems22. For example, sympathetic vasodilator neurons predominantly control the blood 
flow of eyelids, cheeks and chin regions, whereas sympathetic vasoconstrictor neurons mainly control the blood 
flow in the nose and ears regions. In contrast, the blood flow in the forehead region is regulated by both sympa-
thetic and parasympathetic vasodilators22. As the sympathetic and parasympathetic nervous systems play differ-
ent roles in physiological and psychological regulations with the former activating fight-flight reactions, whereas 
the latter serving to defuse stress reactions, different physiological or psychological states may have respective 
distinct ANS signatures23,24. In turn, different physiological or psychological states (e.g., fight or flight actions) 
may engender different spatiotemporal patterns of cardiovascular activities on the face.

For example, a recent study found that unpleasant bitter taste stimulus decreased blood flow in the nose, 
whereas pleasant taste such as sweet and umami increased blood flow in the eyelids16. Another study found that 
capsaicin significantly increased blood flow in the forehead, eyelids, nose, cheeks, and upper and lower lips, 
whereas menthol significantly decreased blood flow in the nose but increased that in the eyelids, and upper and 
lower lips25. Thus, if we can capture these spatiotemporal patterns of facial blood flow, we can then use them to 
decode different physiological or psychological states. In contrast, the VPPG method and the related averaging 
approach, unfortunately, fail to consider the crucial spatiotemporal cardiovascular information.

The present proof-of-concept study aimed to investigate the spatiotemporal pattern of cardiovascular activ-
ities. To this end, we used a novel transdermal optical imaging (TOI) method26 that is specifically designed to 
obtain cardiovascular signals on the face without the interference from the ballistic cardiac activities. This meth-
odology capitalizes on the translucent nature of the skin as mentioned above. As shown in Fig. 1, light re-emits 
after it travels through different skin tissues, and then can be captured by optical cameras (Fig. 1a). The main 
chromophores that affect the re-emitted light are melanin and hemoglobin, which show different color signatures, 
respectively. The TOI methodology uses machine learning to separate the biplanes in the video images that reflect 
hemoglobin concentrations from those that reflect melanin concentrations, with optimal signal-to-noise ratio 
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(for details, see ref.26). As a result, the TOI technology obtains transdermal video images (Fig. 1b) that mainly 
reflect temporal hemoglobin concentration changes under the epidermis.

To obtain spatiotemporal patterns of such signals, we used independent component analysis (ICA). Different 
from the studies mentioned above that performed ICA on the signals of three color channels (i.e., red, green and 
blue) averaged across the whole face9,10, the present study performed the temporal ICA on transdermal blood flow 
dynamics that were extracted from multiple facial sub-regions and mainly included the temporal change infor-
mation of hemoglobin concentration changes in these regions. Thus, each independent component obtained by 
ICA should contain both spatial and temporal information that may reflect the underlying facial cardiovascular 
activity in the sub-regions of the face.

Using Transdermal optical imaging methodology, we divided the face into ten different regions of interests 
(ROIs) and obtained facial transdermal blood flow data reflecting cardiovascular activities in these ROIs as a 
function of time (Fig. 2a). We selected these ROIs based on the facial vascular anatomy and the existing evidence 
about differential neural controls of the facial vasculature22. To reduce data dimension and increase the signal to 
noise ratio, we pooled the image values on each bitplane of each channel to obtain the raw temporal signal for the 
specific channel in each of the ROIs.

We also concurrently recorded participants’ Electrocardiography (ECG) signals using an ECG system. Then, 
we used the following spatiotemporal analysis approach to analyze the data. First, we used the group ICA method 
to decompose temporal signals extracted from all participants’ facial blood flow activities in all facial ROIs into 
multiple independent components. Thus, such spatiotemporal analysis allows us to explore the spatial distribu-
tion pattern of the cardiovascular activity across a face. Second, we selected the independent components whose 
temporal dynamics contained the information of the facial cardiovascular activities among all participants based 
on the ECG data. At the same time, we obtained the spatial information provided by these independent compo-
nents that allowed us to localize the specific facial ROIs where the facial blood flow dynamics optimally indicated 
the facial cardiovascular activity.

We hypothesized that if the transdermal optical imaging method can indeed capture cardiovascular activities 
on the face, these activities should correlate with the ECG signals. In specific, specific independent components 
should be identified to be the best predictors of the ECG signals. Further and more importantly, if cardiovascular 
activities indeed vary in different parts of the face, our spatiotemporal analysis approach should reveal that these 
specific independent components show different temporal dynamics in the different sub-regions of the face.

Results
Figure 3 illustrates the results of data processing for one participant as an example. These results include five 
independent components (Fig. 3a), their respective magnitude spectrum (Fig. 3b) and phase spectrum (Fig. 3c), 
ECG signal (Fig. 3d Left), and the magnitude spectrum (Fig. 3d Middle) and phase spectrum (Fig. 3d Right) of 
the ECG signal.

It should be noted that because the temporal group ICA was used in the present study, the temporal dynamics 
of each independent component can be segmented into different temporal dynamics for different participants, 
respectively. Thus, for each independent component, its spatial distribution was invariant for all its segmented 
temporal dynamics (i.e., for all participants). Additionally, the number of independent components obtained by 
ICA should be theoretically equal to the number of measured signals (i.e., 10 ICs for 10 ROIs). However, the Fast 
ICA in the present study did not converge after 5 independent components were decomposed. As a result, only 5 
independent components were analyzed here (Fig. 3a).

According to Equation 3, each independent component includes the temporal dynamics and the spatial distri-
bution with the latter reflecting the relative projection strengths of the former at different facial ROIs, respectively. 
Thus, for each independent component, we obtained the absolute value of its spatial distribution in order to focus 
on the comparison among these projection strengths. Additionally, for convenience of display, each spatial dis-
tribution was also normalized by dividing the maximum absolute value of its 10 projection strengths. Figure 3a 
shows the temporal dynamics as well as the normalized absolute value of the spatial distribution for each of 5 
independent components.

In Fig. 3a, the brighter (i.e., more yellow) ROI indicates that the temporal dynamics of one independent com-
ponent is projected into this region with stronger strength. As shown by Fig. 3a, the first independent component 

Figure 1. Schematic overview of the acquirement of the transdermal face image. (a) The traveling and re-
mitting of light through different skin tissues. (b) An example of transdermal face image.
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(IC1) elicited the strongest transdermal blood flow change on the bilateral forehead; the second independent 
component (IC2) elicited strongest transdermal blood flow change on the left chin; the third independent com-
ponent (IC3) elicited the strongest transdermal blood flow change on the left cheek; the fourth independent com-
ponent (IC4) elicited the strongest transdermal blood flow change on the left forehead; and the fifth independent 
component (IC5) elicited the strongest transdermal blood flow change on the bilateral forehead. For convenience 
of comparison among these spatial distributions, we transformed them into a 2-D matrix (distribution matrix, 
Fig. 4). The rows of this matrix indicate the linear-arranged spatial distribution of 5 independent components, 
respectively, whereas the columns of this matrix present the 10 facial ROIs, respectively.

As shown by this distribution matrix, the signals of some facial regions were composed of more than one 
independent component. For example, the left forehead presented the strongest projection strengths of the tem-
poral dynamics of IC1 and IC4, and a relatively strong one of IC5; the right forehead presented the strongest 
projection strengths of the temporal dynamics of IC5, and a relatively strong one of IC1; the left cheek presented 
the strongest projection strength of the temporal dynamics of IC3 and a relatively strong one of IC2; the left chin 
presented the strongest projection strength of the temporal dynamics of IC2, and a relatively strong one of IC1. 
These findings suggested that although the spatial distributions of the independent components were different 
from each other, some of them carry similar information.

We found significant correlations of magnitude spectrum (band of 0.7~2.5 Hz) between the temporal dynam-
ics of each independent component and the time course of ECG (Table 1 Left columns). These results indicated 
that all five independent components that were decomposed from the transdermal facial blood flow data indeed 
included valid information about participants’ cardiovascular activities.

We further performed the same correlation analyses between the phase spectrum of the temporal dynamics 
of the 5 independent components and that of ECG signal, respectively. None of the correlations were signifi-
cant (Table 1 Right columns). These results suggested that the phases of the cardiovascular activities in the five 

Figure 2. Schematic overview of group ICA. (a) The video images of 11 participants are concatenated head-
to-tail and the concatenated time courses that include the transdermal facial blood flow are extracted from 
10 regions of interests, respectively. (b) The group ICA is actually an extended version of Equation 3. Here, 
each row of the left column shows the concatenated time courses of 11 participants originally extracted from 
each of the 10 facial ROIs, which is indicated by the corresponding row of Matrix X in Equation 3. Each 
independent component decomposed from the original concatenated time courses (i.e., the left column) have 
two features, namely the temporal dynamics and the spatial distribution. Each row of the right column shows 
the concatenated temporal dynamics of each independent component across 11 participants, which is indicated 
by corresponding row of Matrix S in Equation 3. Each sub-figure of the middle column shows the spatial 
distribution of each independent component, which is indicated by corresponding column of matrix W−1 in 
Equation 3. It should be noted that, for each independent component, all the time points of its concatenated 
temporal dynamics have the same spatial distribution. The color map presents the spatial distribution of 
strength with which the temporal dynamics of one independent component is projected into different ROIs of 
a face. For an independent component, the more yellow the ROI of its spatial distribution, the stronger strength 
with which its temporal dynamics is projected into this ROI.
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Figure 3. The results of group ICA of an example participant. (a) The individual temporal dynamics and 
spatial distribution of each independent component for this participant. It should be noted that the individual 
temporal dynamics are segmented from the concatenated temporal dynamics of respective independent 
components. The color map presents the spatial distribution of strength with which the temporal dynamics of 
one independent component is projected into different ROIs of a face. For an independent component, the more 
yellow the ROI of its spatial distribution, the stronger strength with which its temporal dynamics is projected 
into this ROI. (b) The magnitude spectrum of the individual temporal dynamics. (c) The phase spectrum of the 
individual temporal dynamics. (d) The time course of ECG signal (left, collected at 200 Hz, resampled to 20 Hz) 
and its magnitude spectrum (middle), and phase spectrum (right). The shade region indicates the frequency 
band of 0.7~2.5 Hz.
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independent components were asynchronous with the phases of the ECG signals, although the temporal dynam-
ics of all independent components still contained information about cardiovascular activities.

Discussion
The present study used a conventional digital camera to reliably reveal cardiovascular activities on the face, non-
invasively and remotely. We did so in a contactless manner whereby we did not need to attach any sensor to the 
face. More importantly, we revealed that the cardiovascular activities presented different temporal properties 
within different facial sub-regions, respectively. To our best acknowledge, the present study is the first to reveal 
the spatiotemporal features of facial cardiovascular activities based on the transdermal blood flow dynamics.

In the present study, we found that the facial cardiovascular signals could be decomposed into five inde-
pendent components because their temporal dynamics were independent of each other. We also found that their 
spatial distributions (i.e., the distribution of the project strengths of the temporal dynamics of each component 
in all facial regions) also varied greatly from one component to another. More specifically, we found that all tem-
poral dynamics of these five independent components presented cardiac-pulse-like magnitude spectrum band, 
suggesting that all of them contained information about the cardiovascular activities.

However, at the same time, the phase spectra of these temporal dynamics in this frequency band were com-
pletely different from that of ECG signal recorded simultaneously. Such difference in phase spectrum resulted in 
the asynchrony of the temporal dynamics of the five ICA components. These findings suggested that although 
the transdermal blood flows in different regions of the face were driven by the same original source, namely the 
cardiac pulse, the facial cardiovascular activities have different spatiotemporal patterns from that of their original 
source. These findings suggest that the traditional method of averaging all signals from the entire face is problem-
atic as it obscures the crucial differential spatiotemporal distributions of the cardiovascular activities on the face. 
The phase shift findings also suggest that the cardiovascular signals obtained through the transdermal optical 
imaging are not ballistocardiac in nature. Otherwise, no phase shift between the ECG and transdermal signals on 
the face should be found.

These different patterns of facial blood flow spatiotemporal dynamics might be a result of a number of factors. 
One potential factor is related to the facial blood vessel distribution. For example, it is well known that blood 
vessels are long and narrow structures. The arteries supplying the forehead region (superficial temporal artery) 
and the chin region (maxillary artery) have greatly different terminal branches27. Such different blood vessel 
structures linking the chin and the forehead may exert different influence on the transmission of cardiovascular 
signals in the blood vessels (e.g., different time delays in different frequencies). As a result, different hemody-
namic responses in these two facial regions are observed.

However, the difference in blood vessel distribution does not fully account for the asynchrony among the 
temporal dynamics of different independent components. In the present study, we found that more than one 
independent component presented the strongest projection strengths of their temporal dynamics in one region 
(e.g., the bilateral forehead). In other words, in the same region (without any difference in distribution of blood 
vessels), there co-exist at least two temporal dynamics that belong to different independent components (and 

Figure 4. The linear-arranged spatial distributions of five independent (Normalized within independent 
component). The color map presents the spatial distribution of strength with which the temporal dynamics of 
one independent component is projected into different ROIs of a face. For an independent component, the more 
yellow the ROI of its spatial distribution, the stronger strength with which its temporal dynamics is projected 
into this ROI.

Independent 
components

Correlations to magnitude spectrum Correlations to phase spectrum

r Statistical value r Statistical value

IC1 0.273 t(10) = 4.679, p < 0.001 0.033 t(10) = 1.441, p = 0.180

IC2 0.378 t(10) = 5.636, p < 0.001 −0.009 t(10) = −0.251, p = 0.807

IC3 0.330 t(10) = 6.890, p < 0.001 −0.013 t(10) = −0.302, p = 0.769

IC4 0.275 t(10) = 3.739, p = 0.004 0.017 t(10) = 0.476, p = 0.644

IC5 0.375 t(10) = 7.560, p < 0.001 −0.015 t(10) = −0.407, p = 0.693

Table 1. Correlations of magnitude spectrum (left) and phase spectrum (right) between the temporal dynamics 
of each independent component and the time course of ECG.
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therefore are independent of each other). Thus, the asynchrony among the temporal dynamics of difference inde-
pendent components may be caused by additional factors.

One such potential factor is the localized neural control. It has been suggested that blood flow in different 
facial areas is regulated by different vasomotor control mechanisms in the ANS22. In the present study, the partic-
ipants were in resting state when the facial transdermal blood flow signal was recorded. However, many resting 
state studies based on functional neuroimaging of the cortical blood flow have found that there are spontaneous 
hemodynamic fluctuations in our brains during the resting state when the brain is presumably not engaged in any 
specific tasks28–30. Especially, it is well established that the brain regions of the default mode network (DMN) even 
show enhanced hemodynamic activity during the resting state relative to the task-related state31. These resting 
state networks have been suggested to be the baseline state of our brain and are closely related to the processing of 
sensory-perceptual, emotional, and cognitive information30. We therefore speculate that the transdermal blood 
flows in different parts of the face may also be regulated by the spontaneous fluctuations of the cortical and 
subcortical structures. If this is the case, our findings suggest that there may exist a close link between the brain 
hemodynamic activity and the facial blood flow activity. This intriguing hypothesis needs to be tested with specif-
ically designed studies that combine our facial transdermal optical imaging methodology with the conventional 
functional neuroimaging methodologies such as functional magnetic resonance imaging (fMRI) and functional 
near-infrared spectroscopy (fNIRS).

It should be noted that because the present study serves as a proof-of-concept of the use of the transdermal 
optical imaging methodology to analyze facial cardiovascular activities, we only recruited a small number of 
participants. Future studies need to be conducted that recruit not only a larger sample of participants but also of 
different skin colors and use different digital video cameras in different lighting conditions to test the robustness 
of the technology’s application.

With further testing and improvements, the transdermal optical imaging may become a standard tool that 
capitalizes on the differences in transdermal facial blood flow in different regions of the face to study not only 
physiological but also psychological activities (e.g., emotional states, stress, and cognitive load). For example, it 
is well known that different emotional states can be revealed by different dynamic properties of cardiac activi-
ties32,33, especially for the emotions that vary along the levels of emotion valence and arousal. For example, larger 
heart rate decelerations occur following unpleasant stimuli presentation as compared to pleasant ones34,35. Thus, 
if the spatiotemporal pattern of cardiovascular activities measured from facial transdermal blood flow varies as 
a function of emotional states, then we can use transdermal optical imaging as a new method to study emotional 
regulations in natural settings. The advantage of this method is that we can do so non-invasively, remotely, inex-
pensively, and sometimes even covertly.

Conclusion
In conclusion, the present study used a convention digital video camera and a novel transdermal optical imaging 
technology to extract blood flow data in different parts of the face. We found that facial cardiovascular activities 
were associated with five independent components reflecting different spatiotemporal dynamics of facial blood 
flow changes. Our findings suggest that the differential spatiotemporal dynamics may be used to study human 
physiological and psychological activities in humans. More broadly, the present findings also point to the poten-
tial of the transdermal optical imaging technology as a new neuroscience methodology to study human physiol-
ogy and psychology, noninvasively, remotely and inexpensively.

Material and Methods
Participants. Eleven healthy subjects participated in the present study (5 males, 6 females, age 30.05 ± 9.43). 
None of them took medication that might influence facial blood flow. The present study was approved by the 
Research Ethics Committee of University of Toronto and participants gave written informed consent prior 
to participating in the study, and all methods were performed in accordance with the relevant guidelines and 
regulations.

Experimental setup. In the present study, we used a Pike F-421 camera (Allied Vision Technologies) to 
capture transdermal images. The camera was placed about 50 cm from participant’s face and video images were 
captured at 20 frames per second with the resolution of 910 × 800. Two LED lights were used as the source of 
illumination. Lights were tested at a National Voluntary Laboratory Accreditation Program (NVLAP) accredited 
laboratory and the luminous flux difference between them was smaller than 0.15%.

Experimental procedure and data acquirement. The experiment was carried out in a dark room. 
Participants were tested individually. During the experiment, participants were instructed to close their eyes, sit 
still and think of nothing specific. Their face images were collected for 2 minutes. Simultaneously, an electrocar-
diogram (MP150 analogue/Digital data acquisition system plus ECG100C amplifier, BIOPAC Systems Inc.) was 
used to record ECG signal at 200 Hz.

Data preprocessing. Data preprocessing included two steps, namely the acquisition of transdermal images 
and intensity normalization, both of which were performed using custom software written in MATLAB (The 
MathWorks, Inc).

Acquisition of transdermal facial blood flow images. As mentioned above, we first obtained full color video 
images of participants’ faces. For each participant, we selected the first 1024 images (approximately 51 seconds) 
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and conducted the analyses as follows. We defined 10 sub-regions (forehead, eyelids, nose, cheeks and chin on 
both sides of the face) as the regions of interests (ROIs) in the transdermal face images (Fig. 2a). Then, we used 
the transdermal optical imaging technology26 to extract a transdermal image from each frame of the video in 
each facial ROI. The transdermal image mainly contained information about hemoglobin concentration under 
the facial epidermis at a particular point in time in each pixel. From this transdermal image, we then used the 
greyscale intensity to index hemoglobin concentration (i.e., the greyer, the greater hemoglobin concentration) in 
each pixel of each ROI. We then averaged the image intensities of all pixels within this ROI to derive the hemo-
globin concentration intensity data for the ROI in that transdermal image. Finally, by linking the data from each 
participant’s transdermal images along the temporal dimension, we obtained the mean temporal changes of the 
transdermal facial hemoglobin concentration changes in each ROI of each participant.

Time course extraction and intensity normalization. We then normalized the mean time course of this ROI using 
the grand mean of pixel intensity across all ROIs of each participant (Equation 1). The grand mean was obtained 
by averaging the intensities across all pixels of the ten ROIs and all time points of these pixels.
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where x(i) indicates the mean time course of ith ROI, and Ni indicates the number of pixels in ith ROI. tijk represents 
the intensity of the kth time point of the jth pixel within the ith ROI for a particular participant. The aim of intensity 
normalization was to remove the inter-individual difference in image intensity, which may result from differences in 
skin color or tone or other optical properties.

All of the 10 normalized mean time courses from the 10 ROIs were referred to as the original time courses, 
which would be used in the following spatiotemporal analyses.

Spatiotemporal analysis of facial cardiovascular activities. Temporal independent component anal-
ysis. ICA is a computational blind source separation technique for separating multivariate signals into sev-
eral statistically independent components. Each independent component obtained by ICA method has two 
features characterizing its spatial distribution and temporal dynamics, respectively. Further, for each inde-
pendent component, the points of its temporal dynamics have the same spatial distribution pattern, and at 
the same time each sub-region of its spatial distribution has the same temporal dynamics pattern. Due to such 
spatiotemporal-invariant property, ICA algorithm is particularly suitable for spatiotemporal analysis.

The objective of ICA is to recover the independent component signal, S, from their linear mixtures, X. The key 
of this method is to find an unmixing matrix, W, which specifies filters that linearly invert the mixing process. 
Thus, a standard ICA model can be expressed in notation as:

=S XW (2)

To better characterize the spatiotemporal properties, Equation 2 can be adapted as the following:

= −X W S (3)1

Here, X is an m × n matrix, of which the ith row presents the time courses originally measured (e.g., the time 
course of one of the facial ROIs in the present study). S is also an m × n matrix, of which the ith row presents the 
temporal dynamics of the ith independent component (IC). W−1 is an m × m mixing matrix, of which the ith 
column reflects the relative projection strengths of the temporal dynamics of the ith independent component. In 
other words, the ith column of W−1 indicates the spatial distribution of the ith independent component whereby 
we can find where this independent component can be best reflected.

Group temporal independent component analysis. It is well known that there is no ordering of decomposed 
independent components. Thus, if we perform ICA for each participant separately, it is impossible to make group 
statistic inferences across all participants. For this reason, we use a group ICA algorithm to solve this problem. 
This method extends ICA algorithm to the group level and therefore can make group inferences. Due to these 
advantages, group ICA has been extensively used in processing of various modalities of imaging data such as 
Electroencephalogram (EEG)36–38 and fMRI39–41.

As shown in Fig. 2, for each ROI, the time course originally extracted from different participants were first 
concatenated head-to-tail. Thus, based on Equation 3, the ith row of X presents the concatenated time courses 
of all participants for the ith ROI (Fig. 2b left column). Next, the temporal ICA was performed on these 10 con-
catenated time courses using Fast ICA algorithm42. Then we obtained theoretically 10 independent components, 
each of which had a concatenated temporal dynamics. Thus the ith row of S indicated temporal dynamics of the 
ith independent component (Fig. 2b right column), whereas the ith column of the W−1 reflected the spatial dis-
tribution of the ith independent component that indicated which facial ROIs this independent component was 
represented on (Fig. 2b middle column). It should be noted that the temporal dynamics of the ith IC was also a 
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concatenated pattern of all participants. This concatenated temporal dynamics had the same spatial distribution 
and therefore was thought to be driven by the same source.

For the concatenated temporal dynamics of each independent component (e.g., the ith independent compo-
nent), it can be segmented into individual temporal dynamics for respective participants. As a result, for the ith 
independent component, different participants had their respective different segmented temporal dynamics but 
the same spatial distribution. If the temporal dynamics of one independent component contains cardiovascular 
activity information, then we can reveal where this cardiovascular activity was best represented in a face based on 
the spatial distribution of this independent component. Thus, using this group temporal ICA method, the time 
courses originally extracted from ROIs of each participant were decomposed into independent components with 
fixed orders for all participants.

Correlation analysis. After independent components were obtained, to examine which one contained the infor-
mation of the cardiovascular activity, for each participant, we calculated the Pearson correlation coefficients 
between the transdermal optical imaging and ECG data in the frequency domain. To do so, first, we transformed 
both the temporal dynamics of each independent component and the sub-sampled ECG signal (20 Hz) into fre-
quency domain using the Fast Fourier Transformation (FFT). Second, for each magnitude spectrum of each par-
ticipant, we preserved the frequency components from 0.7 to 2.5 Hz. It is generally accepted that this frequency 
band contains the cardiac pulse of the majority of the population. Thus, this frequency band selection allows 
us not only to focus on the main cardiac activity but also to avoid disturbance from other physiological signals 
such as respiration. Third, for each participant, we calculated the Pearson correlation coefficients between the 
magnitude spectrum (banded from 0.7 to 2.5 Hz) of temporal dynamics of each independent component and 
that of sub-sampled ECG signal. Then, we transformed each correlation coefficient to Z-scores using Fisher’s 
Z-transformation. Finally, for each independent component, one-sample t-tests were performed on the Z scores 
across the 11 participants to test whether these Z-scores were significantly different from zero at the group level.

Using the same approach as above, we performed the correlation analysis between the phase spectrum of the 
temporal dynamics of the ICA components and that of the ECG data.

Data availability. The dataset analyzed during the present study is available from the corresponding author 
on reasonable request.
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