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1
SYSTEM AND METHOD FOR DETECTING
PHYSIOLOGICAL STATE

TECHNICAL FIELD

The following relates generally to health diagnostics and
more specifically to an image-capture based system and
method for detecting physiological state.

BACKGROUND

Tele-health service is the use of telecommunications
and/or technology to provide healthcare-related services
from a distance. It not only expands access to quality patient
care, especially to rural regions and underserved popula-
tions, but also provides a way to cut down healthcare costs.
It is changing the healthcare delivery model for the better.
According to HIS, the number of patients using tele-health
service will rise from roughly 350,000 in 2013 to at least 7
million by 2018.

The most common form of a tele-health service is a doctor
consulting a patient via video-chat platform. However, if
doctor want to gather more patient vital signs, such as heart
rate, respiratory rate and blood pressure, various extra
devices and training are required. These devices are inva-
sive, generally expensive, and need to be purchased in
advance of the consultation.

Early diagnosis of various conditions can improve the
quality and length of life of many patients. One such
condition is stress, which has become one of the leading
health issues. Clinical researchers have found that stress is
a major cause of a range of diseases from cardiovascular
disease to depression to substance abuse. According to the
American Institute of Stress, workplace stress costs United
States more than 300 billion each year, not only in health
care costs but also in missed work, employee turnover,
worker compensation, and insurance.

Currently, there are mainly two approaches to measure a
subject’s stress level. The first approach relies on self-
reporting. Researchers have developed a wide variety of
questionnaires to determine the stress level of a patient. The
second and more reliable and accurate approach is the
measurement of physiological characteristics, such as blood
pressure, vagal tone or salivary cortisol. All these measures
require the use of advanced devices and professional train-
ing.

SUMMARY

In one aspect, a system for detecting physiological states
from a captured image sequence of a subject, is provided the
system comprising: a camera configured to capture an image
sequence of the subject, the image sequence comprising a
query set of images; a processing unit trained to determine
a set of bitplanes of a plurality of images in the captured
image sequence that represent hemoglobin concentration
(HC) changes of the subject and that maximize signal
differentiation between different physiological states; a clas-
sification machine, trained using a training set comprising
HC changes of subjects with known physiological states,
and configured to: detect the subject’s physiological states
based on HC changes in the set of bitplanes; and output the
detected physiological states.

In another aspect, a method for detecting physiological
states from a captured image sequence of a subject, is
provided, the method comprising: capturing, by a camera, an
image sequence of the subject, the image sequence com-
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2

prising a query set of images; processing the captured image
sequence, by a trained processing unit, to determine a set of
bitplanes of a plurality of images in the captured image
sequence that represent hemoglobin concentration (HC)
changes of the subject and that maximize signal differen-
tiation between different physiological states; processing the
set of bitplanes, by a classification machine trained using a
training set comprising HC changes of subjects with known
physiological states, to: detect the subject’s physiological
states based on HC changes in the set of bitplanes; and
output the detected physiological states.

BRIEF DESCRIPTION OF THE DRAWINGS

The features of the invention will become more apparent
in the following detailed description in which reference is
made to the appended drawings wherein:

FIG. 1 is an block diagram of a transdermal optical
imaging system for physiological state detection;

FIG. 2 illustrates re-emission of light from skin epidermal
and subdermal layers;

FIG. 3 is a set of surface and corresponding transdermal
images illustrating change in hemoglobin concentration
associated with a physiological state for a particular human
subject at a particular point in time;

FIG. 4 is a plot illustrating hemoglobin concentration
changes for the forehead of a subject who experiences
positive, negative, and neutral physiological states as a
function of time (seconds);

FIG. 5 is a plot illustrating hemoglobin concentration
changes for the nose of a subject who experiences positive,
negative, and neutral physiological states as a function of
time (seconds);

FIG. 6 is a plot illustrating hemoglobin concentration
changes for the cheek of a subject who experiences positive,
negative, and neutral physiological states as a function of
time (seconds);

FIG. 7 is a flowchart illustrating a fully automated trans-
dermal optical imaging and invisible physiological state
detection system;

FIG. 8 is an exemplary report produced by the system;

FIG. 9 is an illustration of a data-driven machine learning
system for optimized hemoglobin image composition;

FIG. 10 is an illustration of a data-driven machine learn-
ing system for multidimensional physiological data model
building;

FIG. 11 is an illustration of an automated invisible physi-
ological state detection system; and

FIG. 12 is a memory cell.

DETAILED DESCRIPTION

Embodiments will now be described with reference to the
figures. For simplicity and clarity of illustration, where
considered appropriate, reference numerals may be repeated
among the Figures to indicate corresponding or analogous
elements. In addition, numerous specific details are set forth
in order to provide a thorough understanding of the embodi-
ments described herein. However, it will be understood by
those of ordinary skill in the art that the embodiments
described herein may be practiced without these specific
details. In other instances, well-known methods, procedures
and components have not been described in detail so as not
to obscure the embodiments described herein. Also, the
description is not to be considered as limiting the scope of
the embodiments described herein.
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Various terms used throughout the present description
may be read and understood as follows, unless the context
indicates otherwise: “or” as used throughout is inclusive, as
though written “and/or”; singular articles and pronouns as
used throughout include their plural forms, and vice versa;
similarly, gendered pronouns include their counterpart pro-
nouns so that pronouns should not be understood as limiting
anything described herein to use, implementation, perfor-
mance, etc. by a single gender; “exemplary” should be
understood as “illustrative” or “exemplifying” and not nec-
essarily as “preferred” over other embodiments. Further
definitions for terms may be set out herein; these may apply
to prior and subsequent instances of those terms, as will be
understood from a reading of the present description.

Any module, unit, component, server, computer, terminal,
engine or device exemplified herein that executes instruc-
tions may include or otherwise have access to computer
readable media such as storage media, computer storage
media, or data storage devices (removable and/or non-
removable) such as, for example, magnetic disks, optical
disks, or tape. Computer storage media may include volatile
and non-volatile, removable and non-removable media
implemented in any method or technology for storage of
information, such as computer readable instructions, data
structures, program modules, or other data. Examples of
computer storage media include RAM, ROM, EEPROM,
flash memory or other memory technology, CD-ROM, digi-
tal versatile disks (DVD) or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium which can be
used to store the desired information and which can be
accessed by an application, module, or both. Any such
computer storage media may be part of the device or
accessible or connectable thereto. Further, unless the context
clearly indicates otherwise, any processor or controller set
out herein may be implemented as a singular processor or as
a plurality of processors. The plurality of processors may be
arrayed or distributed, and any processing function referred
to herein may be carried out by one or by a plurality of
processors, even though a single processor may be exem-
plified. Any method, application or module herein described
may be implemented using computer readable/executable
instructions that may be stored or otherwise held by such
computer readable media and executed by the one or more
processors.

The following relates generally to the physiological diag-
nostics and more specifically to an image-capture based
system and method for detecting health-related information,
and specifically the physiological state of an individual
captured in a series of images or a video. The system
provides a remote and non-invasive approach by which to
detect a physiological state with a high confidence. Many
people have access to a digital camera and can thus obtain
image sequences of themselves or others (such as family
members) for purposes of analysis as disclosed herein. Such
image sequences can be captured via, for example, a web
cam, a smartphone forward or rear facing camera, a tablet
camera, a conventional digital camera, etc. The image
sequences can be transferred to a computing device for
analysis via a computer network, removable media, etc.

The sympathetic and parasympathetic nervous systems
are responsive to stress and pain. It has been found that an
individual’s blood flow is controlled by the sympathetic and
parasympathetic nervous system, which is beyond the con-
scious control of the vast majority of individuals. Thus, an
individual’s internally experienced stress and pain can be
readily detected by monitoring their blood flow. Internal
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stress and pain systems prepare humans to cope with dif-
ferent situations in the environment by adjusting the acti-
vations of the autonomic nervous system (ANS); the sym-
pathetic and parasympathetic nervous systems play different
roles in stress and pain regulation with the former up
regulating fight-flight reactions whereas the latter serves to
down regulating the stress reactions. Basic stress and pain
states have distinct ANS signatures. Blood flow in most parts
of'the face such as eyelids, cheeks and chin is predominantly
controlled by the sympathetic vasodilator neurons, whereas
blood flowing in the nose and ears is mainly controlled by
the sympathetic vasoconstrictor neurons; in contrast, the
blood flow in the forehead region is innervated by both
sympathetic and parasympathetic vasodilators. Thus, differ-
ent internal physiological states have differential spatial and
temporal activation patterns on the different parts of the face.
By obtaining hemoglobin data from the system, facial hemo-
globin concentration (HC) changes in various specific facial
areas may be extracted. These multidimensional and
dynamic arrays of data from an individual are then com-
pared to computational models based on normative data to
be discussed in more detail below. From such comparisons,
reliable statistically based inferences about an individual’s
internal physiological states may be made. Because facial
hemoglobin activities controlled by the ANS are not readily
subject to conscious controls, such activities provide an
excellent window into an individual’s genuine innermost
physiological state.

It has been found that it is possible to isolate hemoglobin
concentration (HC) from raw images taken from a tradi-
tional digital camera, and to correlate spatial-temporal
changes in HC to human physiological states. Referring now
to FIG. 2, a diagram illustrating the re-emission of light from
skin is shown. Light (201) travels beneath the skin (202),
and re-emits (203) after travelling through different skin
tissues. The re-emitted light (203) may then be captured by
optical cameras. The dominant chromophores affecting the
re-emitted light are melanin and hemoglobin. Since melanin
and hemoglobin have different color signatures, it has been
found that it is possible to obtain images mainly reflecting
HC under the epidermis as shown in FIG. 3.

The system implements a two-step method to generate
rules suitable to output an estimated statistical probability
that a human subject’s physiological state belongs to one of
aplurality of physiological states, and a normalized intensity
measure of such physiological state given a video sequence
of any subject. The physiological states detectable by the
system correspond to those for which the system is trained.

Referring now to FIG. 1, a system for physiological data
detection in accordance with an embodiment is shown. The
system comprises interconnected elements including an
image processing unit (104), an image filter (106), and an
image classification machine (105). The system may further
comprise a camera (100) and a storage device (101), or may
be communicatively linked to the storage device (101)
which is preloaded and/or periodically loaded with video
imaging data obtained from one or more cameras (100). The
image classification machine (105) is trained using a training
set of images (102) and is operable to perform classification
for a query set of images (103) which are generated from
images captured by the camera (100), processed by the
image filter (106), and stored on the storage device (102).

Referring now to FIG. 7, a flowchart illustrating a fully
automated transdermal optical imaging and invisible physi-
ological data detection system is shown. The system per-
forms image registration 701 to register the input of a video
sequence captured of a subject with an unknown physiologi-
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cal state, hemoglobin image extraction 702, ROI selection
703, multi-ROI spatial-temporal hemoglobin data extraction
704, invisible physiological state model 705 application,
data mapping 706 for mapping the hemoglobin patterns of
change, physiological state detection 707, and report gen-
eration 708. FIG. 11 depicts another such illustration of
automated invisible physiological state detection system.

The image processing unit obtains each captured image or
video stream and performs operations upon the image to
generate a corresponding optimized HC image of the sub-
ject. The image processing unit isolates HC in the captured
video sequence. In an exemplary embodiment, the images of
the subject’s faces are taken at 30 frames per second using
a digital camera. It will be appreciated that this process may
be performed with alternative digital cameras and lighting
conditions.

Isolating HC is accomplished by analyzing bitplanes in
the video sequence to determine and isolate a set of the
bitplanes that provide high signal to noise ratio (SNR) and,
therefore, optimize signal differentiation between different
physiological states under the facial epidermis (or any part
of the human epidermis). The determination of high SNR
bitplanes is made with reference to a first training set of
images constituting the captured video sequence, coupled
with EKG, pneumatic respiration, blood pressure, laser
Doppler, oximeter data from the human subjects from which
the training set is obtained. The EKG, pneumatic respiration,
blood pressure, and blood oxygenation data are firstly used
to extract the heart rate, respiratory rate, blood pressure and
blood oxygenation data from the HC data. The second step
comprises training a machine to build a computational
model for a particular physiological state using spatial-
temporal signal patterns of transdermal HC changes in
regions of interest (“ROIs”) extracted from the optimized
“bitplaned” images of a large sample of human subjects.

Heart rate, respiratory rate, blood pressure, blood oxy-
genation index Heart rate, respiratory rate, blood pressure
and blood oxygenation data are obtained by analyzing
bitplanes in the video sequence to determine and isolate a set
of the bitplanes that are best correlated with the EKG,
pneumatic respiration, blood pressure and the blood oxy-
genation machine data.

The human brain innervates the heart by means of stimuli
via the autonomic nervous system (ANS, including sympa-
thetic and parasympathetic nervous systems). The activation
of sympathetic system leads to an increase of heart rate
while the parasympathetic nervous system decreases the
heart rate. As a result of a tug-of-war between these two
systems, the heart modulates continually between accelera-
tion and deceleration. The variance in time interval between
heart beats (HRV) reflects the status of the autonomic
nervous system.

More than a quarter-century of clinical research has
shown that HRV can be a reliable indicator of a subject’s
stress level. When people are exposed to a stressor, the
parasympathetic nervous system is suppressed and the sym-
pathetic nervous system is activated. Hormones, such as
epinephrine and norepinephrine, are secreted into the blood
stream, leading to a series of physiological responses such as
blood vessel constriction, blood pressure increase and heart
rate variability decrease. When the stressor is no longer
present, the body stops producing cortisol, the balance
between sympathetic and parasympathetic system is re-
established, and the heart rate variability increases again.

After an empirically-based HC isolation procedure, the
set of bitplanes that provide the highest heart beat signal-
to-noise ratio is determined, and the optimized heart beat
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signal is extracted. By defining the distance between two
consecutive heart beat peaks, the heart beat interval time
series data is calculated. Several digital signal transforma-
tions (e.g. Fourier transformations) are completed, and a
stress level index is obtained. By comparing the stress level
index against a normative stress index distribution profile
that has been previously generated, a subject’s comparative
stress level can be assessed. A common heart-beat signal can
be extracted from HC in any ROI, the system may utilize
multiple ROIs to strengthen and improve this extracted the
heart beat signal, because it is redundant information that is
being carried in all/any ROI. Once determined, the stress
level (and optionally heart beat signal) are available to be
inputs to the classification machine for predicting the sub-
ject’s overall physiological state. The stress index provides
a valuable and distinct indication (separate from the heart
beat signal from which it is actually derived, or from the HC
changes) towards the prediction/classification of the subject
physiological state.

For training, video images of test subjects exposed to
stimuli known to elicit specific physiological states are
captured. Responses may be grouped broadly (neutral, low,
high) or more specifically (highly stressed, lowly stressed,
highly pained, lowly pained, etc.). In further embodiments,
levels within each physiological state may be captured.
Preferably, subjects are instructed not to express their physi-
ological state on the face so that the physiological reactions
measured are invisible physiological states and expressed as
changes in HC only. To ensure subjects do not “leak”
physiological states in facial expressions, the surface image
sequences may be analyzed with a facial physiological
expression detection program. EKG, pneumatic respiratory,
blood pressure, and laser Doppler, blood oxygenation data
may further be collected using an EKG machine, a pneu-
matic respiration machine, a continuous blood pressure
machine, a laser Doppler machine and oximeter and pro-
vides additional information to reduce noise from the bit-
plane analysis, as follows.

ROIs for physiological state detection (e.g., forehead,
nose, and cheeks) are defined manually or automatically for
the video images. These ROIs are preferably selected by
subject matter experts who are steeped in the domain
knowledge related to how HC is relevant as an indicator of
physiological state. Using the native images that consist of
all bitplanes of all three R, G, B channels, signals that
change over a particular time period (e.g., 10 seconds) on
each of the ROIs in a particular physiological state (e.g.,
stressed) are extracted. The process may be repeated with
other physiological states (e.g., relaxed or neutral). The
EKG and pneumatic respiration data may be used to prevent
non-physiological state systemic HC signals from masking
true physiological state-related HC signals. Fast Fourier
transformation (FFT) may be used on the EKG, respiration,
and blood pressure data to obtain the peek frequencies of
EKG, respiration, blood pressure and blood oxygenation and
then notch filers may be used to measure HC activities on the
ROIs with temporal frequencies centering around these
frequencies. Independent component analysis (ICA) may be
used to accomplish the same goal.

Referring now to FIG. 9 an illustration of data-driven
machine learning for optimized hemoglobin image compo-
sition is shown. Using the filtered signals from the ROIs of
two or more than two physiological states 901 and 902,
machine learning 903 is employed to systematically identify
bitplanes 904 that will significantly increase the signal
differentiation between the different physiological state and
bitplanes that will contribute nothing or decrease the signal
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differentiation between different physiological states. After
discarding the latter, the remaining bitplane images 905 that
optimally differentiate the physiological states of interest are
obtained. More specifically, the bitplane selection comprises
selecting the RGB pixel bit-combination which will maxi-
mize the signal-to-noise-ratio (SNR) of the signal differen-
tiation between different physiological states. To further
improve SNR, the result can be fed back to the machine
learning 903 process repeatedly until the SNR reaches an
optimal asymptote.

As determining the set of bitplanes that will maximize the
SNR of the signal differentiation between different physi-
ological states (e.g. maximizing for SNR of the heart beat
signal) comprises a calibration, this determination may be
conducted once during the extraction process or may be
executed periodically, so as to continuously ensure the
maximum SNR during the entirety of the extraction process.
The frequency provides a trade off in the extraction time
versus the desired quality of the signal.

The machine learning process involves manipulating the
bitplane vectors (e.g., 11 8x8x8, 16x16x16) using image
subtraction and addition to maximize the signal differences
in all ROIs between different physiological states over the
time period for a portion (e.g., 70%, 80%, 90%) of the
subject data and validate on the remaining subject data. The
addition or subtraction is performed in a pixel-wise manner.
An existing machine learning algorithm, the Long Short
Term Memory (LSTM) neural network, or a suitable alter-
native thereto is used to efficiently and obtain information
about the improvement of differentiation between physi-
ological states in terms of accuracy, which bitplane(s) con-
tributes the best information, and which does not in terms of
feature selection. The Long Short Term Memory (LSTM)
neural network allows us to perform group feature selections
and classifications. The LSTM machine learning algorithms
are discussed in more detail below. From this process, the set
of bitplanes to be isolated from image sequences to reflect
temporal changes in HC is obtained. An image filter is
configured to isolate the identified bitplanes in subsequent
steps described below.

The image classification machine 105, which has been
previously trained with a training set of images captured
using the above approach, classifies the captured image as
corresponding to a physiological state. In the second step,
using a new training set of subject physiological data
derived from the optimized biplane images provided above,
machine learning is employed again to build computational
models for physiological states of interests (e.g., high vs.
low risk for heart attack). Referring now to FIG. 10, an
illustration of data-driven machine learning for multidimen-
sional invisible physiological state model building is shown.
To create such models, a second set of training subjects
(preferably, a new multi-ethnic group of training subjects
with different skin types) is recruited, and image sequences
1001 are obtained when they are exposed to stimuli eliciting
known physiological response. An exemplary set of stimuli
is the International Affective Picture System, which 1 has
been commonly used to induce physiological dates and other
well established physiological date-evoking paradigms. The
image filter is applied to the image sequences 1001 to
generate high HC SNR image sequences. The stimuli could
further comprise non-visual aspects, such as auditory, taste,
smell, touch or other sensory stimuli, or combinations
thereof.

Using this new training set of subject physiological data
1003 derived from the bitplane filtered images 1002,
machine learning is used again to build computational
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models for physiological states of interests (e.g., high vs.
low risk for heart attack) 1003. Note that the physiological
state of interest used to identify remaining bitplane filtered
images that optimally differentiate the physiological states
of interest and the state used to build computational models
for physiological states of interests must be the same. For
different physiological states of interests, the former must be
repeated before the latter commences.

The machine learning process again involves a portion of
the subject data (e.g., 70%, 80%, 90% of the subject data)
and uses the remaining subject data to validate the model.
This second machine learning process thus produces sepa-
rate multidimensional (spatial and temporal) computational
models of trained physiological states 1004.

To build different physiological models, facial HC change
data on each pixel of each subject’s face image is extracted
(from Step 1) as a function of time when the subject is
viewing a particular physiological date-evoking stimulus. To
increase SNR, the subject’s face is divided into a plurality of
ROIs according to their differential underlying ANS regu-
latory mechanisms mentioned above, and the data in each
ROI is averaged.

Referring now to FIG. 4, a plot illustrating differences in
hemoglobin distribution for the forehead of a subject is
shown. Though neither human nor computer-based facial
expression detection system may detect any facial expres-
sion differences, transdermal images show a marked differ-
ence in hemoglobin distribution between positive 401, nega-
tive 402 and neutral 403 conditions. Differences in
hemoglobin distribution for the nose and cheek of a subject
may be seen in FIG. 5 and FIG. 6 respectively.

The Long Short Term Memory (LSTM) neural network,
or a suitable alternative such as non-linear Support Vector
Machine, and deep learning may again be used to assess the
existence of common spatial-temporal patterns of hemoglo-
bin changes across subjects. The Long Short Term Memory
(LSTM) neural network machine or an alternative is trained
on the transdermal data from a portion of the subjects 1 (e.g.,
70%, 80%, 90%) to obtain a multidimensional computa-
tional model for each of the three invisible physiological
categories. The models are then tested on the data from the
remaining training subjects.

Following these steps, it is now possible to obtain a video
sequence of any subject and apply the HC extracted from the
selected biplanes to the computational models for physi-
ological states of interest. The output will be (1) an estimated
statistical probability that the subject’s physiological state
belongs to one of the trained physiological dates, and (2) a
normalized intensity measure of such physiological state.
For long running video streams when physiological states
change and intensity fluctuates, changes of the probability
estimation and intensity scores over time relying on HC data
based on a moving time window (e.g., 10 seconds) may be
reported. It will be appreciated that the confidence level of
categorization may be less than 100%.

In further embodiments, optical sensors pointing, or
directly attached to the skin of any body parts such as for
example the wrist or forehead, in the form of a wrist watch,
wrist band, hand band, clothing, footwear, glasses or steer-
ing wheel may be used. From these body areas, the system
may also extract dynamic hemoglobin changes associated
with physiological dates while removing heart beat artifacts
and other artifacts such as motion and thermal interferences.

In still further embodiments, the system may be installed
in robots and their variables (e.g., androids, humanoids) that
interact with humans to enable the robots to detect hemo-
globin changes on the face or other-body parts of humans
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whom the robots are interacting with. Thus, the robots
equipped with transdermal optical imaging capacities read
the humans’ invisible physiological states and other hemo-
globin change related activities to enhance machine-human
interaction.

Two example implementations for (1) obtaining informa-
tion about the improvement of differentiation between
physiological states in terms of accuracy, (2) identifying
which bitplane contributes the best information and which
does not in terms of feature selection, and (3) assessing the
existence of common spatial-temporal patterns of hemoglo-
bin changes across subjects will now be described in more
detail. One example of such implementation is a recurrent
neural network.

One recurrent neural network is known as the Long Short
Term Memory (LSTM) neural network, which is a category
of neural network model specified for sequential data analy-
sis and prediction. The LSTM neural network comprises at
least three layers of cells. The first layer is an input layer,
which accepts the input data. The second (and perhaps
additional) layer is a hidden layer, which is composed of
memory cells (see FIG. 12). The final layer is output layer,
which generates the output value based on the hidden layer
using Logistic Regression.

Each memory cell, as illustrated, comprises four main
elements: an input gate, a neuron with a self-recurrent
connection (a connection to itself), a forget gate and an
output gate. The self-recurrent connection has a weight of
1.0 and ensures that, barring any outside interference, the
state of a memory cell can remain constant from one time
step to another. The gates serve to modulate the interactions
between the memory cell itself and its environment. The
input gate permits or prevents an incoming signal to alter the
state of the memory cell. On the other hand, the output gate
can permit or prevent the state of the memory cell to have
an effect on other neurons. Finally, the forget gate can
modulate the memory cell’s self-recurrent connection, per-
mitting the cell to remember or forget its previous state, as
needed.

The equations below describe how a layer of memory
cells is updated at every time step t. In these equations:

X, is the input array to the memory cell layer at time t. In our
application, this is the blood flow signal at all ROIs

jgz:[xlﬂzz e Xl
W, W, W, W, U, Us, U, U, and V, are weight
matrices; and
b, bs b, and b, are bias vectors .
First, we compute the values for i, the input gate, C, and
the candidate value for the states of the memory cells at time
G
i=0(Wx+Ush, +b;)

é( cht+ Ucht— l+bc)

Second, we compute the value for f,, the activation of the
memory cells’ forget gates at time t:

J=oWx AU, 1+by)

Given the value of the input gate activation i, the forget
gate activation f, and the candidate state value C,, we can
compute C, the memory cells’ new state at time t:

CritCat Cy

With the new state of the memory cells, we can compute
the value of their output gates and, subsequently, their
outputs:
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0/:0( Wx AU V,Cb,)

h=o0*an h(C,)

Based on the model of memory cells, for the blood flow
distribution at each time step, we can calculate the output
from memory cells. Thus, from an input sequence Xx,, X,
X,, - . . , the memory cells in the LSTM layer will produce
a representation sequence hg, h;, h, . . ..

The goal is to classify the sequence into different condi-
tions. The Logistic Regression output layer generates the
probability of each condition based on the representation
sequence from the LSTM hidden layer. The vector of the
probabilities at time step t can be calculated by:

p/~softmax( Wouzpurhz"'bouq»ut)

where W, is the weight matrix from the hidden layer to
the output layer, and b,,,,,,,, is the bias vector of the output
layer. The condition with the maximum accumulated prob-
ability will be the predicted condition of this sequence.

Other machine training approaches such as deep learning
may be used as well.

Referring now to FIG. 8, an exemplary report illustrating
the output of the system for detecting human physiological
state is shown. The system may attribute a unique client
number 801 to a given subject’s first name 802 and gender
803. A physiological state 804 is identified with a given
probability 805. The physiological state intensity level 806
is identified, as well as a physiological state intensity index
score 807. In an embodiment, the report may include a graph
comparing the physiological state shown as being felt by the
subject 808 based on a given ROI 809 as compared to model
data 810, over time 811.

While the above-described embodiment is directed to
detecting stress, those skilled in the art will appreciate that
the same approach can be used for detecting other physi-
ological states. For example, this approach can be used to
detect the presence or absence of pain in a subject. Since a
pain state and a no pain state mainly activate the sympathetic
and parasympathetic systems respectively, it is possible to
differentiate between them by analyzing the spatial and
temporal HC changes in the face of a subject. The best
bitplanes set is determined for pain/no pain differentiation,
a pain/no pain computational model is built using a machine
learning method and this model is used to estimate the
statistical probability that a subject is or is not experiencing
pain.

The foregoing system and method may be applied to a
plurality of fields, including personal physiological data
capture. In one embodiment, a person can capture one or
more sets of images of themselves using a conventional
digital camera, such as a web camera, a camera built into a
smartphone, etc. The sets of images can then be analyzed
using a computing device that has the physiological data
model built from training. This can be done locally, or
remotely by transmitting the captured sets of images to
another computing device, such as during a video-based
tele-health session.

This approach can also be used to detect skin lesions that
would normally be difficult to spot visually. Many kinds of
skin lesions, from acne and pimples, to basal cell carcinoma
and squamous-cell carcinoma, can lead to regional hemo-
globin/melanin concentration abnormality and can be
detected from transdermal structure images at a very early
stage.

Further, some illnesses can be detected early via the above
approach. This can be used to perform screening at borders
and other checkpoints for communicable conditions.
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In embodiments, the system may be used to determine the
stress or pain state of a subject that is unable to speak and/or
has muscular disabilities.

In other embodiments, the system can be used to quantify
a subject’s stress level during a stressful event to determine
how well suited the particular subject is for a certain
position, role, etc.

The system may be used to identify stress, pain, and
fatigue levels felt by employees in a transport or military
setting. For example, a fatigued driver, pilot, captain, sol-
dier, etc., may be identified as too fatigued to effectively
continue with shiftwork. In addition to safety improvements
that may be enacted by the transport industries, analytics
informing scheduling may be derived.

In yet another aspect, the system may be used by financial
institutions looking to reduce risk with respect to trading
practices or lending. The system may provide insight into
the stress levels felt by traders, providing checks and bal-
ances for risky trading.

The system may be used by telemarketers attempting to
assess user reactions to specific words, phrases, sales tactics,
etc. that may inform the best sales method to inspire brand
loyalty or complete a sale.

In still further embodiments, the system may be used as
a tool in affective neuroscience. For example, the system
may be coupled with a MRI or NIRS or EEG system to
measure not only the neural activities associated with sub-
jects’ stress and/or pain but also the transdermal blood flow
changes. Collected blood flow data may be used either to
provide additional and validating information about sub-
jects’ stress and/or pain state or to separate physiological
signals generated by the cortical central nervous system and
those generated by the autonomic nervous system. For
example, the blush and brain problem in fNIRS (functional
near infrared spectroscopy) research where the cortical
hemoglobin changes are often mixed with the scalp hemo-
globin changes may be solved.

In still further embodiments, the system may detect physi-
ological conditions that are elicited by sound in addition to
vision, such as music, crying, etc. Physiological conditions
that are elicited by other senses including smell, scent, taste
as well as vestibular sensations may also be detected.

Other applications may become apparent.

Although the invention has been described with reference
to certain specific embodiments, various modifications
thereof will be apparent to those skilled in the art without
departing from the spirit and scope of the invention as
outlined in the claims appended hereto. The entire disclo-
sures of all references recited above are incorporated herein
by reference.

The invention claimed is:

1. A system for detecting physiological states from a
captured image sequence of a subject, the system compris-
ing:

a camera configured to capture an image sequence of the
subject, the image sequence comprising a query set of
images;

a processing unit trained to determine a set of bitplanes of
a plurality of images in the captured image sequence
that represent hemoglobin concentration (HC) changes
of the subject and that maximize signal differentiation
between different physiological states, wherein the set
of bitplanes that represent HC changes are determined
for a selected plurality of regions of interest (ROI) of
the subject that are relevant as an indicator of physi-
ological state;
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a classification machine, trained using a training set
comprising HC changes of subjects with known physi-
ological states, and configured to:
detect the subject’s physiological states based on HC

changes in the set of bitplanes; and
output the detected physiological states,

wherein the processing unit is further configured to
extract from the HC changes of one or more ROI a
heart beat signal of the subject, process the heat beat
signal to determine heart beat interval time series data
of the subject, perform Fourier transforms on the heart
beat interval time series data to obtain a stress level
index, compare the stress level index with a predeter-
mined normative stress index distribution profile to
determine the subject’s comparative stress level, and
provide the subject’s comparative stress level to the
classification machine for use in detecting the subject’s
physiological states.

2. The system of claim 1, wherein determining the set of
bitplanes that maximize differentiation between different
physiological states comprises selecting, using a machine
learning technique, an RGB pixel bit-combination that
maximizes a heart beat signal-to-noise ratio.

3. The system of claim 1, wherein detecting the subject’s
physiological states based on HC changes comprises calcu-
lating an estimated statistical probability that the subject’s
physiological state conforms to a known physiological state
from the training set, and a normalized intensity measure of
such determined physiological state.

4. The system of claim 3, wherein outputting the subject’s
physiological states comprises grouping each of the detected
physiological states into one of a plurality of groupings
based on the calculated statistical probability and normal-
ized intensity measure.

5. The system of claim 1, wherein the physiological states
comprise stress levels, pain levels or fatigue levels.

6. The system of claim 1, wherein the camera comprises
an optical sensor directly attached to the skin of the subject,
and the processing unit is further configured to remove
artifacts from motion and heat from the captured image
sequence.

7. The system of claim 1, wherein the processing unit is
further configured to process the captured image sequence to
detect skin lesions that would be difficult to spot visually.

8. The system of claim 1, further comprising one of a
magnetic resonance imaging unit, a near-infrared spectros-
copy imaging unit or an electroencephalography imaging
unit for capturing a second image sequence, and the pro-
cessing unit is further configured to determine the subject’s
transdermal blood flow changes from the second image
sequence.

9. A method for detecting physiological states from a
captured image sequence of a subject, the method compris-
ing:

capturing, by a camera, an image sequence of the subject,
the image sequence comprising a query set of images;

processing the captured image sequence, by a trained
processing unit, to determine a set of bitplanes of a
plurality of images in the captured image sequence that
represent hemoglobin concentration (HC) changes of
the subject and that maximize signal differentiation
between different physiological states, the set of bit-
planes that represent HC changes are determined for a
selected plurality of regions of interest (ROI) of the
subject that are relevant as an indicator of physiological
state;
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extracting, by the trained processing unit, from the HC
changes of one or more ROI a heart beat signal of the
subject;

processing, by the trained processing unit, the heat beat

signal to determine heart beat interval time series data
of the subject;

performing, by the trained processing unit, Fourier trans-

forms on the heart beat interval time series data to
obtain a stress level index;

comparing, by the trained processing unit, the stress level

index with a predetermined normative stress index
distribution profile to further determine the subject’s
comparative stress level;

processing the set of bitplanes, by a classification machine

trained using a training set comprising HC changes of

subjects with known physiological states, to:

detect the subject’s physiological states based on HC
changes in the set of bitplanes and the subject’s
comparative stress level; and

output the detected physiological states.

10. The method of claim 9, wherein determining the set of
bitplanes that maximize differentiation between different
physiological states comprises selecting, using a machine
learning technique, an RGB pixel bit-combination that
maximizes a heart beat signal-to-noise ratio.

11. The method of claim 9, wherein detecting the subject’s
physiological states based on HC changes comprises calcu-
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lating an estimated statistical probability that the subject’s
physiological state conforms to a known physiological state
from the training set, and a normalized intensity measure of
such determined physiological state.

12. The method of claim 11, wherein outputting the
subject’s physiological states comprises grouping each of
the detected physiological states into one of a plurality of
groupings based on the calculated statistical probability and
normalized intensity measure.

13. The method of claim 9, wherein the physiological
states comprise stress levels, pain levels or fatigue levels.

14. The method of claim 9, wherein the camera comprises
an optical sensor directly attached to the skin of the subject,
and the method further comprises removing artifacts from
motion and heat from the captured image sequence.

15. The method of claim 9, further comprising processing
the captured image sequence to detect skin lesions that
would be difficult to spot visually.

16. The method of claim 9, further comprising capturing
a second image sequence, by one of a magnetic resonance
imaging unit, a near-infrared spectroscopy imaging unit or
an electroencephalography imaging unit, and processing the
second image sequence to determine the subject’s transder-
mal blood flow changes from the second image sequence.
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