
Smartphone-based Identification of Critical Levels of
Glycated Hemoglobin A1c using Transdermal Optical Imaging 

J O U R N A L  O F  N A T U R A L  S C I E N C E S  |  6 2

HUDDA SALIH¹ 𝄒², SI JIA WU³, EVGUENI KABAKOV³, KANG LEE³, AND WEIHONG ZHOU¹
¹ Department of Health Management Centre, Nanjing Drum Tower Hospital, China
² Department of Biological Sciences, University of Toronto Scarborough, Canada
³ Applied Psychology and Human Development, University of Toronto, Canada

A current health concern is the constraints of blood glucose monitoring techniques in the
face of the ever-expanding predominance of diabetes. Electronic medical devices can
potentially overcome these limitations and prevent the development of diabetes-related
complications. This study investigated whether advanced machine learning methods and
Anura, a smartphone-based transdermal optical imaging technology (TOI) that assesses
health markers, can be a viable solution for diabetes management. To examine the
validity of TOI and a novel machine algorithm for diabetes prediction, we compared the
diabetes classification from TOI’s obtained glycated hemoglobin A1c (HbA1c)
concentrations against data obtained from FDA-approved blood immunoassays. The data
set was obtained from 513 participants recruited during their annual physical examination
at the Health Management Centre of the Affiliated Hospital of Nanjing University Medical
School, China. We used a kitchen sink random forest machine algorithm for diabetes
prediction. To validate the model, pristine testing was done on 400 pristine participants
pseudo-randomly selected during 20 trials of training and testing. The confusion matrix
found TOI to have a classification accuracy of 66%, and the Receiver operating
characteristic (ROC) curve of the Random Forest (RF) classifier found TOI to have a ROC
Area Under the Curve (AUC) of .69. The present study provides evidence for the potential
use of the TOI technology, Anura, for contactless, non-invasive, and inexpensive
assessments of diabetes. 

Keywords: transdermal optical imaging, diabetes, glycated hemoglobin A1C 

Abstract

PRIMARY RESEARCH ARTICLE

(Saeedi et al., 2019). In diabetes, the
absolute deficiency of insulin and/or
insulin resistance does not allow glucose
to sufficiently leave the bloodstream to
enter cells of the body (University of
Leicester, 2016). This results in an 

Introduction
The prevalence of diabetes is rising at an
alarming rate, nearing the proportions of a
global epidemic. Currently, the number of
adults with diabetes is 463 million and is
expected to rise to 700 million by 2045 
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increased blood glucose level. High blood
glucose, or hyperglycemia, is a major
concern of those affected with diabetes. A
high glycemic level causes behavioural
changes in arterial myocytes, leading them
to contract more than they would at
normal blood glucose levels (University of
Leicester, 2016). This can cause high blood
pressure and reduce the supply of blood to
vital organs (University of Leicester, 2016). 

Recognizing the signs of high and low
blood glucose is crucial to one’s health.
Every six seconds, someone is estimated to
die from diabetes-related complications,
and in 2013, diabetes caused
approximately 5.1 million deaths (Bird et
al., 2015). Although monitoring and
controlling glucose levels are essential to
prevent the development of diabetes-
related complications and death, the
current assessment methods have
numerous limitations. We still face
difficulties in reliably and conveniently
monitoring glucose. The present research
aimed to address these difficulties with
the use of transdermal optical imaging
(TOI), a novel smartphone-based
technology for contactless assessment of
physiological health and well-being. 

Two major methods have been used to
monitor glucose levels. The first is the
glucose test (Sherwani et al., 2016). This
approach involves the extraction of
patients’ blood in order to measure their
blood glucose levels (Solnica & Naskalski,
2007). While this method is an integral

part of diabetes care, it presents numerous
limitations (Ong et al., 2014). Glucose
tests provide measures in real-time, so
they are affected by multiple factors such
as illness and food ingestion (Qian &
Scheer, 2016). In addition, glucose
metabolism is under circadian control;
thus, the measure is also influenced by the
large daily fluctuations that result from
blood glucose regulation (Qian & Scheer,
2016).

The second method, the glycated
hemoglobin A1c (HbA1c) test, is
considered the gold standard assessment
for diabetes management. The test
measures the amount of glucose attached
to the HbA1c protein, consequently giving
an average blood glucose level over the
three-month life span of the protein
(Sherwani et al., 2016). While the HbA1c
test overcomes certain limitations of the
glucose test, it does require blood samples
collected by physicians to undergo
laboratory assessment and places a
constant burden on the household budget
(Sherwani et al., 2016). For appropriate
diabetes management, diabetics are
recommended to take the HbA1c test every
3 months ($44 per test) and self-monitor
their blood glucose ($860 per month;
Chadee et al., 2014; Yeaw et al., 2012).
Furthermore, access to testing and a blood
glucose meter is often a health barrier to
under-resourced communities (e.g., rural
and low-income; Sherwani et al., 2016). As
such, the current methods for diabetes
management raise concerns regarding  
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their invasive, time-consuming, and
expensive approach. 

Recent technological innovations have led
to the development of electronic health
devices that address the limitations of
current standards of assessment (i.e.,
Apple watch and FitBit; Dinh-Le et al.,
2019). These devices have improved the
accessibility and convenience of health
assessments (Dias & Paulo Silva Cunha,
2018). Of particular interest is the
development of TOI. Since it has been
implemented into the smartphone
application Anura, TOI has enabled various
electronic gadgets to function as versatile
health devices without increasing costs. If
TOI can aid in HbA1c measurements, then
it can potentially overcome the limitations
of current methods by utilizing a
smartphone to capture video images of the
face for extraction of HbA1c in a
convenient, contactless, and remote
manner (Wei et al., 2018). 

TOI works by capitalizing on the
translucent nature of facial skin and uses
machine learning algorithms to obtain
facial blood flow (Wei et al., 2018). Optical
sensors on smartphones can capture the
red light re-emitted from hemoglobin
underneath the skin in order to extract
facial blood flow changes (Wei et al.,
2018). Various health markers can be
predicted from TOI because facial blood
flow changes are tightly associated with
cardiovascular change (Wei et al., 2018).
Since HbA1c levels are associated with

changes in the cardiovascular system,
predictive measurements of HbA1c are
considered an appropriate application of
TOI. Moreover, a recent study established
the approval concept of HbA1c optical
detection and found optical methods to
accurately estimate the percentage of
HbA1c (Mandal & Manasreh, 2018).
 
These results provide insight into the
potential success of TOI-based HbA1c
prediction. Furthermore, the literature
suggests that TOI is highly efficient and
accurate in predicting various health
markers. TOI has been demonstrated to be
a strong predictor of heart rate and heart
rate variability (Wei et al., 2018). Camera-
based health readings using Anura (i.e.,
TOI), were found to have statistically
significant correlates with Food and Drug
Administration (FDA)-approved medical
devices (Wei et al., 2018). In addition, by
applying advanced machine learning
methods, TOI has been found to effectively
predict blood pressure levels (Luo et al.,
2019). The computational models were
found to predict systolic and diastolic
blood pressure with 95% and 96%
accuracy, respectively (Luo et al., 2019). 

In light of this, the present study aims to
expand the capabilities of TOI to measure
HbA1c levels. We investigated whether a
novel computational model can be used to
predict HbA1c measures. To create the
model, the machine learning algorithm
was trained to produce random forest
classifiers for diabetes prediction. Through
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the use of training sets of data, the model
was provided with predictive features and
labels to classify individuals as non-
diabetic or diabetic. Following training,
the model was evaluated using a test data
set. 

Model validation is of particular interest
since the development of an authenticated
non-invasive, convenient, and inexpensive
device for HbA1c measurement would
allow individuals to confidently monitor
their HbA1c levels with a smartphone and
mitigate diabetes-related complications.
Thus, we used a kitchen sink random
machine-learning algorithm to utilize the
blood flow information obtained from TOI
to make diabetes predictions. We then
examined the validity of the
computational model in comparison to the
FDA-approved immunoassay for identifying
critical HbA1c levels. To examine the
accuracy of our model, we compared the
model’s predictions from blood flow
extracted by TOI with collected blood
samples. We hypothesized that if the
model has a high classification accuracy
and high ROC Area Under the Curve (AUC)
score, then the findings suggest the
potential use of TOI as a valid
methodology for assessing HbA1c
conveniently, non-invasively,
inexpensively, and remotely.

42.81 years, SD = 14.33) were recruited
during their annual physical examination
at the Health Management Centre of the
Affiliated Hospital of Nanjing University
Medical School, China. All participants
were given full disclosure of the research
protocol and signed a written informed
consent form prior to the experiment. The
study was conducted in accordance with
the NIH research ethics guidelines and was
approved by the Research Ethics Review
Committee. 

Materials 

The transdermal optical imaging (TOI)
system, the Anura smartphone application,
was used to collect participants’ facial
blood flow information. Anura uses TOI to
detect and track an individual’s facial
regions of interest (ROIs), which provide
the optical properties of the face to obtain
blood flow information. A portable screen
was used to collect participant’s Anura
video recordings. The portable screen
includes an iPhone 7 smartphone
positioned on a tripod and an LED light
positioned above the smartphone. The LED
light emitted uniform lighting from the
smartphone’s camera point of view (see
Figure 1). 

Procedures

Participants were tested individually in an
examination room at the Health
Management Centre of the Affiliated
Hospital of Nanjing University Medical 

Methods
Participants

513 participants (385 males; age, M = 
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School. First, participants' blood samples
were collected by medical professionals.
Next, participants were instructed to
remain seated in front of a desk that held
the portable screen. The Anura smartphone
application recorded a 1-minute video of
the participant’s face in order to measure
and collect their facial blood flow
information. 

Data Analysis

Blood Analysis. Blood samples were
collected from the participants and tested
in the laboratory for glycated hemoglobin
A1 measurements.

TOI Analysis. With the use of TOI analysis,
the participants’ hemoglobin concentration
(HC) was collected from a 1-minute video
from the digital camera in the smartphone
(Wei et al., 2018). This analysis takes
advantage of the fact that the human
facial skin is translucent. When light hits
our skin, it travels beneath the skin and
re-emits after travelling through different

skin tissues (Wei et al., 2018). The optical
cameras in the smartphone capture these
properties of the skin in order to obtain
information on skin chromophore content.
Since the dominant chromophores,
hemoglobin and melanin, have different
colour signatures, we can utilize the
distinction to visualize hemoglobin in the
dermis (Wei et al., 2018). TOI and machine
learning algorithms can isolate
hemoglobin-rich regions and generate
corresponding images of participants’
hemoglobin concentration (Wei et al.,
2018). 

HC is obtained within the video stream
using bit-plane slicing to isolate a set of
bit-planes that provide high a signal-to-
noise ratio (SNR) with regard to facial
cardiovascular activities (Wei et al., 2018).
The high SNR bit-planes were determined
following training sets of images that were
concurrently taken with FDA-approved
medical instruments that measure
cardiovascular activities on the face (Wei
et al., 2018). The signals from pixels 

Figure 1. Glycated hemoglobin A1c (HbA1c) measurements are collected in this AnuraBP series setup.
Participants sit in front of a table, which holds a portable screen. The portable screen consists of an iPhone 7
smartphone positioned on a tripod and an LED light positioned above the smartphone.
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not-balanced RF classifier training with a
threshold for non-diabetes and diabetes
equal to clinically approved ones, 5.7%
(Sherwani et al., 2016). 

The results from the laboratory HbA1c test
were used as ground truth data in order to
evaluate the accuracy of our diabetes
classification model.
 
Validation of the Model. To validate the
model, data were derived from pristine
testing on 400 pristine participants
pseudo-randomly selected during 20 trials
of training and testing. To compare the
data obtained from TOI against those from
the blood samples, we computed the
MATLAB confusion matrix and ROC curve
of RF classifier to assess the level of
agreement between TOI and the blood
samples’ diabetes prediction. The
confusion matrix was used to assess the
number of false positives, false negatives,
true positives, and true negatives of TOI.
The ROC curve of RF classifier was used to
assess the true positive rate and false
positive rate of TOI. The threshold for
diabetes was incorporated in the MATLAB
feature selection and not-balanced random
forest classifier training at 5.7% (see
Figures 2 & 3). 
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within the bit-planes are employed to
systematically produce images that
contain the corresponding HC in each pixel
(Wei et al., 2018). These images are then
put together as videos to reflect HC
changes in all parts of the face (Wei et al.,
2018).

Machine Learning Analysis. The training
dataset was divided into two parts: non-
diabetes and diabetes. We used a novel
kitchen sink random forest model to utilize
the facial blood flow information obtained
from TOI for diabetes classification. Since
HbA1c accounts for 97% of total
hemoglobin, we constructed a model to
particularly extract HbA1c from TOI’s
obtained hemoglobin concentration (Kahn
& Fonseca, 2008). Thus, the video of each
participant's face was analyzed for facial
blood flow information that reflects
cardiovascular activities that correlate
with HbA1c. 

In order to construct the Random Forest
(RF) model, we used MATLAB to build not-
balanced decision trees for ensemble
diabetes prediction. Random samples of
the training dataset were used to build the
not-balanced trees. Each decision tree was
built to make independent diabetes
classification and ‘vote’ for the
corresponding class (i.e., non-diabetes or
diabetes) based upon HbA1c thresholds. In
addition, we used MATLAB bagging and
feature randomness methods to produce
uncorrelated decision trees. We also
applied the MATLAB feature selection and 

Results

In the present study, pristine testing was
done on 400 pristine participants pseudo-
randomly selected during 20 trials of
training/testing. Using MATLAB, the
diabetes classification model was
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Figure 2. The confusion matrix. There are two axes:
(1) the true class (y-axis; determined by blood
samples), and (2) the predicted class (x-axis;
determined by TOI). Non-diabetes is classified as ‘0’,
and diabetes is classified as ‘1’. The equal error rate
(EER) threshold values for the model’s false positive
and false negative rate is set to {159 100 55 86 }
0.351. TOI has a classification accuracy of 66%.  

Figure 3. The ROC curve of the RF classifier. The ROC
curve is generated by plotting the true positive rate
(y-axis; FP/(FP+TN)) against the false positive rate (x-
axis; TP/(TP+FN)). The true and false positive rates
evaluate the accuracy of the model’s classifications.
It is the probability in which the model correctly or
incorrectly classifies the individual respectively. The
TOI has a ROC AUC of 0.69.

Correct predictions:
262 predictions

Total number of the dataset:
400 pristine participants

Classification accuracy:
66% ( = 262/499; see Figure 2)

The classification accuracy of the
confusion matrix is calculated as the total
number of correct predictions (TP + TN)
divided by the total number of the dataset
(P + N). 

The ROC curve of the RF classifier is a
graphical illustration of a model’s
prediction of binary outcomes. It was used
to assess the true positive rate and false
positive rate of TOI (see Figure 3). 

evaluated by a confusion matrix and area
under the ROC curve (AUC; see Figures 2 &
3).

The confusion matrix visualizes the
performance of the model in predicting
diabetes class (see Figure 2). 

The accuracy of the predicted class
(determined by TOI) is evaluated by the
true class (determined by blood samples).
The top-left and bottom-right entry of the
confusion matrix shows the predicted
class’s true positive (TP) and true negative
predictions (NP) respectively. The top-
right and bottom-left entries of the
confusion matrix show the predicted
class’s false positive (FP) and false
negative (FN) predictions, respectively. 

The ROC AUC indicates how well the
model can distinguish between the two
classes (i.e., non-diabetes and diabetes).
Using the ROC curve, the ROC AUC can be
determined as per the following:
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The ROC curve of the RF classified
Generated by plotting the true
positive rate (y-axis; TP/(TP+FN))
against the false positive rate (x-
axis; FP/(FP+TN))

True positive rate = 92/(92 + 49)
= 0.65
False positive rate = 89/(89 +
170) = 0.34

Calculation of the ROC AUC 
ROC’s sum(height*weight)

The ROC AUC 
0.69 (see Figure 3) 

1.
a.

i.

ii.

2.
a.

3.
a.

Discussion

The limitations of conventional blood
glucose monitoring techniques are a
pressing medical issue. In this study,
systematic efforts were made in designing
a random forest model for diabetes
prediction. Novel machine learning
classification algorithms were studied and
evaluated on their performance on various
measures. An AUC of .5 and a classification
accuracy of 50% suggests that the
classification model is unable to
distinguish between the positive and
negative class. So, the benchmark in which
ROC AUC and classification accuracy are
considered high, is above .5 and 50%,
respectively. Using blood HbA1c test
results as ground truth data, our model
was found to have a high classification
accuracy and ROC AUC score, providing
evidence that our model has good class
separation capacity. The majority of TOI’s
diabetes classification predictions were
found to correctly classify individuals as

non-diabetic or diabetic. Thus, the results
indicate promise for TOI as a potential
alternative method for diabetes
identification without a blood test.

While laboratory testing is the most
effective in assessing HbA1c, it requires
invasive and painful extraction of blood
samples and it is costly. In contrast, by
using TOI technology and machine
learning algorithms, diabetes prediction
can be simplified and made more
accessible. Nevertheless, it is important to
note that TOI can only serve as a
supplementary source for diabetes
management; it is not a substitute for the
clinical judgment of a healthcare
professional.
 
Though the results of this study are
promising, more evidence is needed before
widespread application. Such application
is restricted due to the considerable
limitations of the current study. For
example, the effectiveness of TOI may only
be applicable to certain conditions and
groups. The study was conducted in a
highly controlled environment,
participants remained seated with a
smartphone on a tripod at a fixed distance
from their face. In addition, facial
recordings were obtained at fixed lighting
and room temperature. 

In practice, recordings will be subject to
variable environmental conditions via
colour temperatures of light and motion
and positioning of head and smartphone.
Future studies should be conducted in



diverse environmental conditions to test
the robustness of TOI technology. Another
limitation in the present study involves
the issue of racial homogenization.
Although the majority of participants in
the study were of East Asian descent, there
was a reasonable degree of skin tone
variation that did not influence the ability
of TOI. Nonetheless, the study lacks racial
heterogeneity, there was not a sufficient
number of participants with very dark or
fair skin tones. Thus, the extent to which
TOI can be generalized to a wider
population remains unclear. 

Future research should investigate the
potency of TOI in extracting HC among a
large sample of diverse skin tones and
races. While the present study shows
promise in a novel TOI technology to
accurately predict diabetes, a limitation of
this method is that it does not provide a
wide range of diabetes classifications. To
monitor diabetes, it is essential that the
assessment tool provides insight into
prediabetes and the risk of diabetes-
related complications. However, this study
aimed to investigate the potential of TOI
to extract HbA1c and make diabetes
predictions. Future studies should make an
effort to extend this initial classification
model to encompass various diabetes-
related predictions. 

Although further work is necessary to
address the aforementioned limitations,
this study is valuable in light of
overcoming the challenges in diabetes 
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health management. Namely, it provides
evidence for the potential use of the TOI
technology, Anura, for truly contactless,
non-invasive, and convenient assessments
for diabetes management. This technology
has the potential to revolutionize diabetes
management by predicting diabetes
classifications through the use of a digital
camera in a smartphone. The application
of the TOI technology for monitoring
diabetes would have a wide range of
economic, societal, and personal benefits. 

At the individual level, TOI can provide a
more proactive approach to healthcare and
improve several aspects of diabetes
management. A smartphone would allow
people to assess and monitor their HbA1c
levels anytime and anywhere, helping to
keep their glycemic levels within a healthy
range. In addition, if a smartphone can
alert an individual at risk for diabetes or
diabetes-related complications, they can
seek medical attention early. 

Given that hyperglycemia can cause
significant damage to vital organs, it is
essential to adopt a proactive approach to
diabetes management (University of
Leicester, 2016). Collectively, TOI and
machine learning algorithms are promising
for the advancement of diabetes
management and proactive self-care.
Future studies should work to expand the
initial model classifications as well as
evaluate the robustness of TOI in diverse
populations and variable environmental
conditions. 
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